Imaging the deep cerebellar nuclei: A probabilistic atlas and normalization procedure

نویسندگان

  • Jörn Diedrichsen
  • Stefan Maderwald
  • M. Küper
  • M. Thürling
  • K. Rabe
  • E. R. Gizewski
  • Mark E. Ladd
  • Dagmar Timmann
چکیده

The deep cerebellar nuclei (DCN) are a key element of the cortico-cerebellar loop. Because of their small size and functional diversity, it is difficult to study them using magnetic resonance imaging (MRI). To overcome these difficulties, we present here three related methodological advances. First, we used susceptibility-weighted imaging (SWI) at a high-field strength (7T) to identify the dentate, globose, emboliform and fastigial nucleus in 23 human participants. Due to their high iron content, the DCN are visible as hypo-intensities. Secondly, we generated probabilistic maps of the deep cerebellar nuclei in MNI space using a number of common normalization techniques. These maps can serve as a guide to the average location of the DCN, and are integrated into an existing probabilistic atlas of the human cerebellum (Diedrichsen et al., 2009). The maps also quantify the variability of the anatomical location of the deep cerebellar nuclei after normalization. Our results indicate that existing normalization techniques do not provide satisfactory overlap to analyze the functional specialization within the DCN. We therefore thirdly propose a ROI-driven normalization technique that utilizes both information from a T1-weighted image and the hypo-intensity from a T2*-weighted or SWI image to ensure overlap of the nuclei. These techniques will promote the study of the functional specialization of subregions of the DCN using MRI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate  f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...

متن کامل

Multimodal 7T Imaging of Thalamic Nuclei for Preclinical Deep Brain Stimulation Applications

Precise neurosurgical targeting of electrode arrays within the brain is essential to the successful treatment of a range of brain disorders with deep brain stimulation (DBS) therapy. Here, we describe a set of computational tools to generate in vivo, subject-specific atlases of individual thalamic nuclei thus improving the ability to visualize thalamic targets for preclinical DBS applications o...

متن کامل

A probabilistic MR atlas of the human cerebellum

The functional organization of the cerebellum is reflected in large part by the unique afferent and efferent connectivity of the individual cerebellar lobules. This functional diversity on a relatively small spatial scale makes accurate localization methods for human functional imaging and anatomical patient-based research indispensable. Here we present a probabilistic atlas of the cerebellar l...

متن کامل

A spatially unbiased atlas template of the human cerebellum.

This article presents a new high-resolution atlas template of the human, cerebellum and brainstem, based on the anatomy of 20 young healthy individuals. The atlas is spatially unbiased, i.e., the location of each structure is equal to the expected location of that structure across individuals in MNI space, a result that is cross-validated with an independent sample of 16 individuals. At the sam...

متن کامل

Comparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei

Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 54 3  شماره 

صفحات  -

تاریخ انتشار 2011